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Summary. We present a preliminary model for describing a solvated intramolec- 
ular charge transfer reaction coupled to a quantum mechanical radiation field. 
Actual calculations of energies and couplings were performed with a recently 
developed self-consistent reaction field response method. The representation of 
dressed molecular states is used for calculating state populations for various laser 
fields. The state populations are sensitive to the properties of the laser field. 
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1. Introduction 

In this article, we consider interactions between molecules and quantized fields, 
in particular, strong fields. The effects of strong light fields on atoms has been 
studied both experimentally and theoretically [1-5], but few have attempted to 
describe fully the more complicated problem of molecules in strong fields, espe- 
cially theoretically [6-17], and a systematic treatment is lacking. Most of the 
studies have been performed with radiation in the infrared region 
[8, 18, 15, 19-21, 11]. A greater number of degrees of freedom exist in the molecu- 
lar problem (compared to the atomic one), and the dynamics resulting from the 
laser-molecule interaction can be quite complex. The observed results and the 
models for describing them depend on several parameters, namely, the intensity, 
whether the laser is pulsed or cw, and if pulsed, on the shape and duration of the 
pulse. However, in experiments at high intensities it can be difficult to characterize 
precisely the laser pulses [7]. 

The examination of such systems is relevant for understanding and controlling 
phenomena such as chemical reactions in solution by utilizing laser irradiation, 
giving insight into the relevant mechanisms in a problem as complex as this. 

Within quantum optics, atomic systems interacting with a photon field have 
been studied in great detail and interesting effects have been postulated and 
demonstrated such as laser cooling of atoms below the single photon recoil limit, 
resonance fluorescence, and photon correlations in intense resonant or quasi- 
resonant laser beams [4, 22]. As an initial investigation of the effects of radiation 
fields on molecules we focus on a two-level molecular system and calculate from 



308 K.V. Mikkelsen, M. Kmit 

first principles the necessary quantities for investigating the evolution of the 
molecular system in the presence of radiation fields. 

We will study a solvated molecular system undergoing an intramolecular 
charge transfer transition induced by interactions with a quantum mechanical 
radiation field. The monochromatic laser field is resonant or quasi-resonant with 
the charge transfer transition. The reason for utilizing a quantum mechanical 
radiation field is centered around the possibility of describing effects such as 
vacuum fluctuations, spontaneous emission, quantum beats and laser linewidths. 

The molecular system interacts with the outer solvent and the laser field plus 
the reservoir of initially empty modes of the quantum mechanical radiation field. 
The molecular system is enclosed by a spherical cavity and immersed in a dielectric 
medium that is characterized by two polarization vectors, the inertial and the 
optical polarization vectors. The vector sum of the two polarization vectors yields 
the total polarization vector of the dielectric medium. The optical polarization 
vector is related to the electronic response of the dielectric medium to the presence 
of the molecular charge distribution within the solvent cavity, while the inertial 
polarization vector is related to the combined molecular motion and vibrational 
response of the dielectric medium to the presence of the molecular charge distribu- 
tion within the solvent cavity. The optical response of the medium is given by the 
optical dielectric constant of the medium, and the total response by the static 
dielectric constant of the medium. The optical polarization vector is assumed to 
follow instantaneously the changes in the molecular charge distribution, whereas 
the inertial polarization has a characteristic relaxation time when responding to 
a sudden change in the molecular charge distribution of the solute. 

The molecular system coupled to the outer solvent is first coupled to the 
radiation mode that initially is occupied with photons of a specific energy and 
polarization. This radiation mode is termed the laser mode. The solvated molecular 
system is also coupled to a radiation reservoir of initially empty photon modes. The 
electromagnetic radiation field is confined in an electromagnetic cavity having the 
volume V. 

Our investigations are in the mesoscopic region which bridges the gap between 
a microscopic and a macroscopic system. A microscopic system could, for example, 
consist of a molecule interacting with a few photons in a microcavity. A macro- 
scopic system would contain well over 100 photons. A mesoscopic system involves 
therefore tens of photons [3]. 

Schematically, we write the Hamiltonian for the total system as 

H = Hmo 1 + H~ol + Wmol-sol + H1 .... + Wn, oH .... + Hres + Wmol-res, (1) 

where Hmob H~o~, H~ .... and Hrcs are the Hamiltonian for the molecular system, the 
solvent, the laser and the electromagnetic reservoir, and where Wmo~-~o~, 
Wmo~-I .... and Wmo~-rc~ are the coupling terms between the molecular compound 
and the solvent, the laser and the radiation reservoir, respectively. Within the 
quantum mechanical description of the electromagnetic radiation field, it is not 
possible to treat the radiation field as if it were composed of separate laser and 
reservoir radiation fields. However, we use it as a schematic representation of the 
system from which it is easy to reach the limit of a classical laser field. We have 
chosen to examine the molecule, para-nitroaniline (PNA), in solution and treat it as 
a two-level system (the energy difference between the two levels in solution with no 
laser field is 0.1805 a.u. or 1.188 × 1015 Hz), the two levels being the ground state 
and the first excited state, the charge transfer state. The validity of the assump- 
tion of the representation of the PNA molecule as a two-level system has been 



Laser field induced charge transfer 309 

demonstrated in the case of hyperpolarizability of PNA [23, 24], both in the gas 
phase and in solution. 

The PNA molecule is placed in a radiation field described by a quantum 
mechanical vector potential and associated electromagnetic fields. The field inten- 
sity is varied along with the frequency of the electromagnetic fields, and the effects 
of these variations on the evolution of the molecular system are considered. 
Different types of variations of the electromagnetic fields will be investigated, 
specifically pulse durations, time delay between pulses, detuning and field inten- 
sities. 

Using a response method [25] we calculate the necessary energies and coupling 
elements needed for solving the evolution equations of the combined system 
consisting of solvated PNA and electromagnetic fields. The PNA molecule is 
solvated by including a dielectric medium, represented by two polarization vectors, 
the inertial and the optical polarization vector. In this way we simulate the effects 
of the outer solvent on the PNA molecule. 

2. The model 

The evolution of the total system, i.e., the molecular system, the radiation field and 
the outer solvent, is governed by Ehrenfest's equation 

d 
i ~ <A> = <[A, H]) ,  (2) 

where the expectation values of the operator (A) and the commutator between the 
operator and the Hamiltonian for the total system <[A, H] )  are given by 

(A) = Tr[Ap] (3) 

<[A, H ] )  = Tr{ [A,  H]p} (4) 

and p is the density operator of the total system. The power of Ehrenfest's equation 
has been demonstrated in numerous investigations of how systems evolve in time 
[26-28]. The time evolution of the system is monitored through the change in the 
expectation values of suitable operators. 

The following manifold of operators is of interest in our case: 

t , t dp;, }, {a, as, as a,, b tk, bk, B ], B,, dp)~, 

where r is not necessarily different from s. The operations atas, at~a, operate on the 
electronic degrees of freedom and the operator a t (at) creates (destroys) an electron 
in level r. The combined effect of two of these operators, for example, atas, is to 
move the electron from level r to level s. The operators b ], bk operate on the degrees 
of freedom of the outer medium, i.e., the condensed phase; the operator bk t (bk) 
creates (destroys) a phonon in the kth mode in the condensed phase. These 
operators are grouped into two classes, one class corresponding to the modes in the 
dielectric medium responsible for the optical polarization vector (the high-fre- 
quency modes, denoted by the superscript high) and the other class corresponding 
to all other modes (the low-frequency modes, denoted by the superscript low, 
responsible for the inertial polarization). The operators B t, B, operate on the 
intramolecular degrees of freedom of the molecule; the operator B~* (B,) creates 
(destroys) a vibration in the nth vibrational mode of the molecule. The last set of 
operators d~)., dp:. operates on the photon degrees of freedom, i.e., the radiation 
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field. The operator dp*z (dp~.) creates (destroys) a photon in the radiation field with 
momentum vector p and polarization 2. 

The equations of motion for this manifold of operators are given by 

i at <a*~as> = ([a*,as, H]>, (5) 

i O <b~gh> = <[bhigh, Hi>, 
at 

(6) 

a i~7 <b~°W> = <[b~ °w, H]>, (7) 

a 
iv:  <B.> = <[B.,H]>, (8) 

0~ 

a 
i~7 <d~.> = <[4a, H]>. (9) 

We consider the total system to consist of a molecule immersed in a condensed 
phase, a solution, and interacting with a radiation field. The molecular degrees of 
freedom are represented by the electronic and vibrational degrees of freedom of the 
molecule. A phonon bath represents the degrees of freedom of the condensed phase. 
The radiation field is given by the vacuum photon field and an applied laser field. 
The vacuum field gives rise to vacuum fluctuations and manifests itself through 
spontaneous emission of photons by excited molecular states. 

The Hamiltonian for the total system is given as 

H = H e + H v +  W c - v + H s + W o _ , + H , + W o _ , .  (10) 

The first term, He, is the many-electronic Hamiltonian for the electronic degrees of 
freedom for the molecular system. The second term, Hv, is the Hamiltonian for the 
intramolecular degrees of freedom contained in the molecular system. The third 
term, We-v, is the vibronic coupling operator, and describes the coupling between 
the electronic and intramolecular degrees of freedom. The fourth term, H~, is the 
Hamiltonian for the outer solvent. The fifth term, Wo-s, is the interaction operator 
taking into account the electrostatic interactions between the molecular charge 
distribution and the outer solvent. The sixth term, Hr, is the Hamiltonian for the 
radiation field. The last term, Wo_ r, takes care of interactions between the radiation 
field and the molecular system. The radiation field is treated quantum mechanically 
and no separation of-the laser mode and reservoir modes is made. 

The many-electron Hamiltonian in second quantization is written as 

1 
He=~h~sat~as+~ ~ (rsltu)a~a~a.as, (11) 

r ,s  r , s , t , u  

where we sum over molecular orbitals. The integrals hrs and (rs[tu) are the usual 
one- and two-electron integrals. 

The intramolecular degrees of freedom are described by the harmonic approxi- 
mation and the Hamiltonian for the intramolecular modes is given by 

Hv = • QnBt. Bn, (12) 
n 



Laser  field induced charge  t ransfer  311 

where {f2.} and {B.*, B.} are the frequencies and the boson operators for the 
modes, respectively. The boson operators obey the rules of ordinary boson algebra. 

The vibronic coupling operator W¢_v is obtained by performing a first-order 
Taylor expansion of the many-electron Hamiltonian in terms of the intramolecular 
degrees of freedom around a given intramolecular configuration. This operator is 
written as 

\(aH~({'?}' {Q"}'~Q. {k})) 
w~_v = ~ (Q. - (20) 

-2 Q. Q0 

= ~ A.H(.X)(B~ + B.), (13) 
n 

where {r~}, {Q.} and {k} represent the molecular system (involving the electronic 
degrees of freedom {ri} and nuclear degrees of freedom {Q.} of the molecular 
compounds) and the bulk solvent (containing both high- and low-frequency modes 
{k}), and where 

H ( 1 )  - (OH¢({ri},_ {Q.}, {k})~ o (14) 
\ ~?O. /Q.=Q. 

(O._QO)_ B~ + B. 

= AQ.(B t. + B.). (15) 

M. is the reduced mass of the mode n, AQ. the zero point displacement along the 
mode n, and the coupling factor A. = ~ .  

The solution is represented by the following Hamiltonian: 

H~ = E COkb~bk, (16) 
k 

where {cok} and ttb kt, bk} are the frequencies and the boson operators for the modes, 
respectively, and the boson operators satisfy ordinary boson algebra. 

The interaction operator representing the electrostatic interactions between the 
molecular charge distribution and the solution is given by 

• t Wo_s = ~ {C~kMkbl + ek Mkbk}, (17) 
k 

where ek, C~k are parameters describing the dielectric interaction between the 
molecular charge distribution and the outer medium. The molecular charge distri- 
bution is expanded through a multipole expansion and is represented by the charge 
moment operators {M~, Mk}. 

The radiation field, the combined laser field and vacuum radiation field, is 
represented by the following Hamiltonian: 

Hr = E pcd~;dp~. (18) 
p2 

where c is the speed of light and p = IPl. 
The interaction between the photons and the molecule is represented by [26] 

1; 
Wo_r - A(r). J(r) dr, (19) 

C 
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where A(r) is the vector potential of the radiation field in the Coulomb gauge and 
J(r) is the current density operator of the molecular system. 

The vector potential written in the Linderberg-Ohrn notation is given by [26] 

A(r) = ~ /2rtc [d]z - ( - 1)~d,~,]n(p)e ip'" (20) 
pz~ pV 

and the molecular current density operator is given by 

j;~(p) = n ( p ) .  fats(r) e'"'" 

= Z (u[ jz(p)[v)a~a, (21) 
u v  

where the summation is over all molecular orbitals, u, v. This allows us to rewrite 
the molecule-radiation field interaction operator as 

W o _ r = - - ~ / 2 ~ v [ d ~ j z ( p ) + d p ~ , j * ~ ( p )  ]. (22) 

The time-dependent statistical density operator is given by the direct product 

fltot(t) = pro(t) X fls(t) X pr(t) (23) 

where the statistical operators pm(t), ps(t) and pr(t) describe the molecular system, 
the outer solvent and the radiation field, respectively, 

p~(t) = e-is(~)p~(0)eiS") (24) 

where p~(0) is the statistical density operator for the outer medium when uncoupled 
from the molecular charge distribution, and is assumed to be a Boltzmann distribu- 
tion at temperature T: 

e-P y, k COkb tkb k 

p~(O) = Tr [e_p y~k O~kb~bkl . (25) 

A unitary transformation takes account of the changes in the statistical density 
operator for the outer solvent due to interactions between the molecular charge 
distribution and the outer medium. The transformation operator S is given as 

S(t) = ~ (Xk(t)b* k + X*(t)bk). (26) 
k 

The time-dependent parameters Xk(t), X*(t) have values determined by the 
strength of the interactions between the molecular charge distribution and the 
outer solvent. 

The radiation field is represented by the following density operator: 

p~(t) = [r(t)) (r(t)[ (27) 

where 

Jr(t)) = e iz") 17 (d~)"~ , ,  ~ I vac}, (28) 
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in which the unitary transformation is given as 

Z(t) = ~ (¢,~.(t)d~ + ~*z(t)dp~.), (29) 
p~ 

where Ivac) is the vacuum state for the electromagnetic field and npz is the 
occupation number for a state of the electromagnetic field with wave vectorp and 
polarization 2. The unitary transformation takes care of the dynamical interaction 
between the molecular system and the electromagnetic field. For the situation 
where only electron-photon interactions are considered, we can write the total 
energy for a given electronic state, I 0 ) ,  as a function of the parameters ~p;~ and ~z 
[29-31] 

E(~pj.) = ( O l H e l O }  - ~pc~pz(t)~'p~.(t) 
pA 

p;. 

- ~'p~(t) < O l j a ( p ) l O ) } .  (30) 

By requiring the energy functional to be stationary with respect to variations in the 
parameters ~p~(t) and ~ ( t )  we obtain 

E(~.~.) = ( o l / - / o l o )  

/ 2rt "~ t 
- 2 ~.~2~z)(OIJ),(P)IO)(OqJ),(P)[O), (31) 

p2 kV,~ , /  

which shows the level shift due to the emission and absorption of virtual photons. 
The statistical density operator for the molecular system is given by 

pm(t) = I ~ )  (~1X pv(t), (32) 

where I~) is the electronic wave function for the molecular system and pv(t) is the 
statistical density operator for the intramolecular degrees of freedom for the 
molecular compounds inside the solvent cavity. The latter is given as 

pv(t) = e-iV<')pv(O)eW<°, (33) 

where pv(0) is the statistical density operator for a Boltzmann distribution at 
temperature T describing the uncoupled intramolecular vibrations 

e-~ E o~.Bt.B. 
pv(O) = , (34) 

Tr Ie-P E.o.B.t B. 1 

and the unitary transformations represented by the operator V(t) change the 
uncoupled statistical density operator, pv(0), into the vibrational states where the 
coupling between the electronic and nuclear degrees of freedom for the molecular 
system are included: 

V(t)  = ~ (Y.(t)B*~ + Y*( t )B.) .  (35) 
n 
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The changes in the statistical density operator for the molecular vibrational modes 
p,(t) are given by the unitary transformation; the time-dependent coupling para- 
meters Y,(t), Y*(t) determine how substantial the changes are. 

The evolution of the electronic operators * * {at a~, as a.} depends on the expecta- 
tion values of the operators {b[, bk} and {B.*, B.}, since 

d 
i~t(at ,  a~)=([at ,  a~ ,H~+Hv+ W¢_v + H~ + Wo_~+H~+ Wo-~]> 

= <[a~a~, H¢]>~ + <[at~as, We_v]>e,vib 

+ ([at, a~, Wo-~]>o,s + ([a~a~, Wo-r]>o., 

= ([a~a,, H~]>o + ~2 A.<[at, a,, H~,')] >o((B,t >~ib 
n 

+ (B.>viU) + ~ C~k([a~a~, Mk]>c(b~>~ 
k 

+ Z o~*<[at.a~, M1]>~(bk>, 
k 

+ < [art a,, j [(p)] 5~ <dpz 5,}. (36) 

The evolution of the operators for the outer medium {b~, bk}, the intramolecular 
degrees of freedom {B, t, B,} and the field operators is given by 

d 
i ~  <bk>~ = <[b,, H~>, + ([bk, Wo-~]>,.~ 

and 

= <[bk, Hs>~ + ~ ([bk, b~,]>~<C~k, Mk,>~ 
k" 

+ ~ < [bk, bk,] * * >s<Tk, Mk.>c, (37) 
k' 

d 
i T  <B,.>vib = ([Bin, H,]  >v,b + <[Bin, Wc-v]>c-vib 

-- ( [B,,, H~] >vib 

-4- Z <[ Bin, ( Btm" + Bm')]>vib<Am'H~')>c , (38) 
m '  

and finally 

d i~ <d,D,  = <[d,~.. H.]>r + <[d,~., Wo_,]>o., 

X / 2 ~  d = ([dp,,, Hs]>r + ~] ~ ( ( [  p;., dJ,;:]>.<j:,(p')>c 
p '2 "  

>,<J~:(P )>c) (39) + * ' 
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3. Discussion of the model 

In the limit of neglecting the reservoir modes, we obtain a picture of a molecular 
system dressed by laser photons. The coupling of the dressed molecular system to 
the reservoir of the initially empty photon modes introduces radiative cascading to 
the dressed molecular states, see Eq. (1). We grossly simplify the quantum descrip- 
tion of the laser field by considering a laser cavity (with a volume V) possessing 
only one mode (of frequency coL) containing photons. For a molecular system 
represented as a two-level molecule coupled to a laser field, we can transform from 
the states [GS, N + 1) and ICT, N)  into dressed molecular states. The two states 
IGS, N + 1) and ICT, N)  correspond to the molecular ground state plus N + 1 
photons and the molecular CT state plus N photons. One photon is absorbed in 
the GS ---, CT transition. 

The frequency of the laser mode (coL) is detuned an amount 6 from the 
frequency of the molecular transition (co) 

= co - coL. (40) 

For resonant or quasi-resonant laser fields, the two states I GS, N + 1) and 
leT, N)  are nearly degenerate belonging to a sub-manifold PN = {IGS, N + 1), 
]CT, g ) }  where the complete manifold is given as {PN} for all N. Within a given 
sub-manifold we perform a diagonalization of the energy expression in terms of the 
two states in the sub-manifold. 

The eigenvalues change with the detuning of the laser field and the coupling 
strength between the molecular states and the laser mode. In Fig. 1 we show how 
the eigenvalues change according to changes in detuning and the photon number, 
the latter reflecting the coupling strength. Coupling to the reservoir causes photons 
to appear in modes that initially were empty. These are the fluorescence photons 
the excited molecular state emits. 

4. Calculations 

The energies of and transition moments between the two molecular states in the 
presence of the outer solvent and the electromagnetic field are calculated using the 
recently developed and implemented solvent response methodology [32]. In Fig. 2 
we present the excitation energies and transition moments between the two states 
as a function of the intensity of the vector potential. The intensity of the electro- 
magnetic vector potential and the associated electric field is proportional to the 
number of photons and inversely proportional to the volume of the electromag- 
netic cavity. These calculations are self-consistent reaction field (SCRF) response 
calculations using the best basis set from Ref. [23], and the flexibility and accuracy 
of this basis set has been proven. In addition, it has been clearly demonstrated that 
in order to obtain absolute polarizabilities and hyperpolarizabilities, it is necessary 
to employ a correlated electronic structure method. The implemented solvent 
response methodology allows for multi-configuration self-consistent reaction field 
response calculations [23, 25]. Presently, we are not concerned with electron 
correlation; our primary interest lies in the development and implementation of 
a method for solving the time evolution equations of a solvated molecular com- 
pound interacting with a quantum mechanical radiation field. The geometry of 
PNA is from Refs. [23, 24]. 
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I CT, N-I> Fig. 1. The energy diagram of the dressed molecule 
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Fig. 2. a The calculated excitation energies and (b) transition moments between the ground state and 
charge transfer state of PNA in benzene as a function of the intensity of the vector potential 

The SCRF response calculations give the excitation energies and transition 
moments  for various intensities of  the electromagnetic field at time equal to zero. 
The frequency of the laser mode lies in the region of the electronic transitions in the 
medium and well above the frequency of the vibrational modes in the solvent. 
Thus, since we assume that the frequency of the laser mode is well above the 
frequencies of intramolecular vibrations we neglect the possibility of  the laser 
dissociating the molecule. We solve the time evolution equations by a sixth-order 
Runge-Kutta  method employing the SCRF response calculated excitation ener- 
gies, transition moments  and couplings to the optical and inertial polarization 
vectors [28]. The inertial polarization vector is fixed at the value for t = 0 and 
corresponds to the inertial polarization vector of the ground state. 

We neither consider the form of the cavity confining the electromagnetic field, 
nor do we take into account any possible shifts in the molecular levels due to the 
presence of this cavity. The quality factor, Q, of  the radiation mode  in the cavity is 
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Fig. 3. The time evolution of the populations in (a) the ICT, N) state and (b) the IGS, N + 1) state for 
the reference conditions: pulse length 2150 a.u. (52.01 fs); number  of photons in the field 80; the detuning 
6 = 0.0018 a.u.; and time between laser pulses 1000 a.u. (24.19 fs) 

an expression of the lifetime of the mode in the cavity, the inverse of (2 being 
proportional to the bandwidth of the cavity. As it is presently possible to achieve 
experimentally very high Q cavities in the optical region [3] (e.g., super high finesse 
optical resonators), we have ignored any decay of the laser mode in the optical 
cavity. The cavity volume is 5 × 106 a.u. and the cavity geometry is arbitrary. 

5. R e s u l t s  

The length of the laser pulse, its intensity (i.e. the number of photons in the laser 
field), the detuning and the dead time (laser off) between one laser pulse and the 
next are varied. The reference values for the above parameters used in the calcu- 
lations are the following: pulse length 2150 a.u. (52.01 fs); number of photons in the 
field 80; a detuning of 6 = 0.0018 a.u.; and a dead time between laser pulses of 
1000 a.u. (24.19 fs). 

The value for the line width of the PNA CT state used in all but one series of 
calculations is three orders of magnitude greater than the natural line width, in 
order to account for the broadening mechanisms in the solution. (In the remaining 
series of calculations, the line width was increased until a decay was observed, see 
Fig. 8.) This value of the lifetime of the CT state with broadening included is still 
long on the time scales under consideration (pulse lengths of approximately 
2000 a.u., dead time between the pulses being about half as large, while the lifetime 
used of the order of 10- 8 s or 4 x 108 a.u.) therefore essentially no decay from the 
charge transfer state to the ground state is observed. 

If other modes were present in the model, we would observe a decay in the 
charge transfer population. 

Figure 3 shows the time evolution of the ICT, N)  state and the IGS, N + 1) 
populations for the reference values of the parameters. There are two laser pulses, 
of equal pulse length, and a detuning 6 = 0.0018 a.u. Upon examining the figure, 
one notes that the population is conserved; as this is the case for all the calculations 
performed, for various values of the parameters listed above, we will present in the 
remaining figures the population of the charge transfer state only. 
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Fig. 4. The time evolution of the populations in 
the leT, N> state for (a) 10 photons (b) 20 
photons and (e) 40 photons in the 
electromagnetic field 

In Fig. 4 we present how the population of the I CT, N > state varies in time for 
a field of 10, 20 and 40 photons, the values of the other parameters being those 
given above. The frequency of oscillation of the [CT, N > population increases with 
increasing photon number. This is not surprising since the increase in the photon 
number corresponds to an increase in the coupling between the two states, leading 
to a more rapid communication between the two states, I GS, N + 1> and [CT, N >. 
One might also note that the final ] CT, N > population depends strongly on where 
in the oscillation the population is when the pulse ends. In addition, one notes that 
the amplitude of the oscillation of the population is largest for the smallest number 
of photons in the field. 

In Fig. 5, the changes in the [CT, N> state population with increasing laser 
pulse length are shown. One can see that by varying the pulse length, one can find 
a value which gives a large final population in the I CT, N> state after the second 
pulse. From this study we chose a pulse length of 2150 a.u. 

Figure 6 shows how the final Icr,  N> population depends on the dead time 
between pulses. Similar to Fig. 5, we can optimize the final I CT, N> population by 
adjusting the dead time accordingly. 

Figure 7 shows how changing the detuning can affect the I CT, N > population. 
A positive 6 (COL < CO) gives rise to the greatest amount of oscillation in the 
population and the possibility for achieving a large final population. For  a positive 
detuning the dressed molecular state containing the largest component of the 
[CT, N> state is the lower one. 

In Fig. 8 the populations of the I CT, N > state are presented for three success- 
ively larger values of the CT state line width. In this way, one observes how the 
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population changes when the damping is increased. A larger damping term in the 
equations of motion could be due to broadening mechanisms or losses. 

The presented calculations do not allow for direct comparison with coupling 
between a fixed energy gap two-level system and a classical electromagnetic field, 
since in our calculations the energy gap and coupling to the electromagnetic field 
change with respect to the number of photons in the system. 

6. Conclusion 

Our concerns in the present article have been to establish a model and present 
preliminary studies involving a solvated intramolecular charge transfer compound 
coupled to a quantum mechanical radiation field, represented as an electromag- 
netic vector potential. We have shown that it indeed is possible to control the final 
population in the charge transfer state. 

The present applications have been grossly simplified with respect to (i) the 
representation of the molecular vibrations; (ii) the outer solvent; (iii) the laser 
pulses; (iv) the electromagnetic microcavity; (v) the decay mechanisms for the 
excited state and (vi) the interactions between the solvent and the radiation field. 

Point (i) could be improved in two ways: either by allowing the molecule to 
vibrate around its equilibrium nuclear configuration in both the molecular ground 
state and excited state, or by describing the nuclear motion utilizing wave packets. 

Point (ii) relates to the fact that the inertial polarization vector is fixed to the 
value corresponding to the charge distribution of the initial state at time t = 0. This 
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constraint could be relaxed by employing a Debye relaxation scheme for the 
inertial polarization vector, incorporating the characteristic relaxation time of the 
solvent to a sudden perturbation. 

Improvements regarding point (iii) would be the most important point to 
consider in the future, and involve the utilization of more realistic laser pulses with 
appropriate line widths, envelopes and shapes. 

With respect to point (iv), ultra-small microcavities like the one in the calcu- 
lations presented here are not yet experimentally available, but trends are surely 
going in that direction [3]. The existence and availability of ultra-thin stretched 
fiber cables proves the point of accessibility of ultra-small microcavities. We have 
throughout our model assumed that we have a perfect electromagnetic cavity with 
a large Q-factor, reflecting no losses in the electromagnetic field. 

The second to the last point, (v), addresses neglecting mechanisms of spontan- 
eous emission other than that corresponding to the decay mechanism of the excited 
C T  state into the GS state with the emission of a photon corresponding to the 
actual G S - C T  transition. In this way we have not fully allowed all the reservoir 
modes to participate in the decay of the molecular CT state into the ground state. 
We have not addressed decay mechanisms related to collision mechanisms or 
energy transfer with the solvent. 

The final point concerns modifications of the externally applied field to account 
for interactions between the solvent and the radiation field. These interactions give 
rise to the concept of a local electromagnetic field interacting with the solute. 
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